Whole genome sequence analyses of three African bovine rotaviruses reveal that they emerged through multiple reassortment events between rotaviruses from different mammalian species

Animal-to-human interspecies transmission is one of the evolutionary mechanisms driving rotavirus strain diversity in humans. Although quite a few studies emanating from Africa revealed evidence of bovine-to-human rotavirus interspecies transmission, whole genome data of African bovine rotavirus strains are not yet available. To gain insight into the complete genome constellation of African bovine rotaviruses, the full genomes of three bovine rotavirus strains were extracted from stool samples collected from calves, amplified using a sequence-independent procedure, followed by 4541 pyrosequencing. Strains RVA/Cow-wt/ZAF/1603/2007/G6P[5] and RVA/Cow-wt/ZAF/1605/2007/G6P[5] were both genotyped as G6-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and were probably two variants of the same rotavirus due to their close nucleotide sequence similarity. The genotype constellation of strain RVA/Cow-wt/ZAF/1604/2007/G8P[1] was G8-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The genetic relationships and phylogenetic analyses suggested that these three bovine rotavirus strains may have emerged through multiple reassortment events between bovine, giraffe and antelope rotaviruses. Due to the close relatedness of genome segments 1 (encoding VP1), 7 (NSP2), 9 (VP7) and 10 (NSP4) of strain RVA/Cow-wt/ZAF/1604/2007/G8P[1] to those of the corresponding segments of human rotaviruses, RVA strain 1604 may represent bovine strains that were transmitted to humans and possibly reassorted with human rotaviruses previously. The complete nucleotide sequences of the bovine rotavirus strains reported in this study represent the first whole genome data of bovine rotaviruses from Africa.

Publish DateApril 16, 2020
Last UpdatedJanuary 27, 2021
Size385.07 KB