Evaluating the effects of giraffe skin disease and wire snare wounds on the gaits of free‑ranging Nubian giraffe

Giraffe skin disease (GSD), a condition that results in superficial lesions in certain giraffe (Girafa spp.) populations, has emerged as a potential conservation threat. Preliminary findings suggested that individuals with GSD lesions move with greater difficulty which may in turn reduce their foraging efficiency or make them more vulnerable to predation. A current known threat to some giraffe populations is their mortality associated with entrapment in wire snares, and the morbidity and potential locomotor deficiencies associated with wounds acquired from snares. The goal of our study was to quantify the locomotor kinematics of free-ranging Nubian giraffe (G. camelopardalis camelopardalis) in Murchison Falls National Park (MFNP), Uganda, and compare spatiotemporal limb and neck angle kinematics of healthy giraffe to those of giraffe with GSD lesions, snare wounds, and both GSD lesions and snare wounds. The presence of GSD lesions did not significantly affect spatiotemporal limb kinematic parameters. This finding is potentially because lesions were located primarily on the necks of Nubian giraffe in MFNP. The kinematic parameters of individuals with snare wounds differed from those of healthy individuals, resulting in significantly shorter stride lengths, reduced speed, lower limb phase values, and increased gait asymmetry. Neck angle kinematic parameters did not differ among giraffe categories, which suggests that GSD neck lesions do not impair normal neck movements and range of motion during walking. Overall, MFNP giraffe locomotor patterns are largely conservative between healthy individuals and those with GSD, while individuals with snare wounds showed more discernible kinematic adjustments consistent with unilateral limb injuries. Additional studies are recommended to assess spatiotemporal limb kinematics of giraffe at sites where lesions are found predominantly on the limbs to better assess the potential significance of GSD on their locomotion.

Publish DateFebruary 27, 2023
Last UpdatedFebruary 27, 2023