Seismic savanna: machine learning for classifying wildlife and behaviours using ground-based vibration field recordings
We develop a machine learning approach to detect and discriminate elephants from other species, and to recognise important behaviours such as running and rumbling, based only on seismic data generated by the animals. We demonstrate our approach using data acquired in the Kenyan savanna, consisting of 8000 h seismic recordings and 250 k camera trap pictures. Our classifiers, different convolutional neural networks trained on seismograms and spectrograms, achieved 80%–90% balanced accuracy in detecting elephants up to 100 m away, and